Evaluation of Smoothness of Louisiana Pavements Based on International Roughness Index and Ride Number

Hani H. Titi 1) and Masood Rasoulian 2)

1) Fulbright Scholar, Department of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan. Associate Professor, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201, USA, hanititi@uwm.edu
2) Pavement Systems Specialist, Louisiana Transportation Research Center, Baton Rouge, Louisiana, USA

ABSTRACT

This paper presents the results of research conducted to develop smoothness specifications for asphalt concrete pavements in Louisiana based on the International Roughness Index (IRI) and Ride Number (RN). Measurements of longitudinal profiles were conducted using the high-speed inertial road profiler along 98.7 km of pavements in 23 different projects. Profile Index (PI) with 5.1 and 0 mm blanking bandwidth, IRI and RN were determined. Statistical analyses were conducted to establish relationships between the different smoothness indices. The mathematical models were used to establish IRI based smoothness specifications for construction control of pavements in Louisiana.

KEYWORDS: Pavement smoothness, International roughness index, Ride number, Pavement ride quality.

INTRODUCTION

The ride quality is one of the most important conditions used by the traveling public to judge roadway pavements. Rough pavements have a significant impact on public satisfaction, safety and also on the economy. Pavements with rough surfaces cause driving discomfort, magnify impact loads on pavement structures such as bridges, damage sensitive transported goods, increase vehicle wear and require expensive maintenance, which will impede traffic flow.

Louisiana Department of Transportation and Development (LA DOTD) recognizes the benefits of having smooth pavement surfaces. These benefits are usually observed in terms of users’ satisfaction and monetary savings. Pavement smoothness specifications are the means used to guarantee the construction of pavements with excellent ride quality. Therefore, standard smoothness specifications are used for quality control during the construction of roadway pavements. Current LA DOTD standard specifications of pavement smoothness are based on the profile index with 5.1 mm blanking bandwidth ($PI_{5.1}$). The California-Type Profilograph is the device approved by LA DOTD to measure pavement profiles for construction acceptance of pavements. While the profilograph is pushed on the pavement surface, the longitudinal roadway profile is recorded on paper. The longitudinal profile trace is then analyzed to determine the profile index with 5.1 mm blanking bandwidth. This index is used to set the pay schedule for pavement contractors.

There is a concern regarding the use of the profile index with 5.1 mm blanking bandwidth to evaluate the
smoothness of pavement surfaces. Evaluation of pavement smoothness using the PI_{31} results in filtering a portion of the pavement roughness and therefore, shows smoother roads than in reality. This situation led to a search for more acceptable measures of pavement smoothness. With the advancement in roadway profiling equipment and technology, attention is focused on the International Roughness Index (IRI) as the rational measure of pavement smoothness. After measuring the longitudinal roadway profile, the IRI is determined using a mathematical model by accumulating the output of quarter-car model and dividing by the profile length. The IRI is expressed in mm/km or inch/mile. The IRI is described as a rational indicator that reflects the smoothness of pavements and the ride quality. Figure 1 depicts the IRI scale for different pavements.

Figure (1): The international roughness index scale for different pavements (Sayers and Karamias, 1998).

Figure (2): The ICC full size inertial profiler used in this study.
Figure (3): Preliminary statistical analysis of the pavement smoothness indices determined from the measured roadway profiles.

There is an ongoing effort by LA DOTD to switch to IRI based pavement smoothness specifications. It is believed that this step will lead to reliable evaluation of pavement smoothness in Louisiana and will produce smoother roadway pavements. In order for LA DOTD to switch the smoothness specifications from PI5.1 to more accurate measures such as IRI, research is needed to develop mathematical models based on actual data collected from Louisiana roadway pavements. The objective of this research is to establish and validate correlations between different smoothness indices to help LA DOTD set new IRI smoothness based specifications for asphalt concrete pavements.

BACKGROUND

Different smoothness indices are available to quantify the smoothness of roadway pavements. Some of these indices are descriptive with no numerical values. Among the commonly used ones is the profile index with 5.1 mm blanking bandwidth, which is a quantitative smoothness index. Due to the concern regarding the use of PI5.1 as a reliable smoothness index, state highway agencies started to search for rational methods to characterize pavement smoothness. In 1982, the International Roughness Index was developed under sponsorship of the World Bank (Sayers et al., 1986). The Federal Highway Administration (FHWA) has adopted the IRI for Highway Pavement Monitoring System.
Table (1): Ride Number Rating Scale (ASTM, 2000).

<table>
<thead>
<tr>
<th>Description</th>
<th>Ride Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>5.0</td>
</tr>
<tr>
<td>Very good</td>
<td>4.5</td>
</tr>
<tr>
<td>Good</td>
<td>4.0</td>
</tr>
<tr>
<td>Fair</td>
<td>3.5</td>
</tr>
<tr>
<td>Poor</td>
<td>3.0</td>
</tr>
<tr>
<td>Very poor</td>
<td>2.5</td>
</tr>
<tr>
<td>Impassable</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

The ride number (RN) is a descriptive index used to describe pavement smoothness. The ride number is determined from the measurement of the longitudinal roadway profile according to the standard procedure described by ASTM E 1489. Table 1 presents the scale of the ride number as described by ASTM (2000), which ranges between 0 for impassable pavement surface and 5 for the perfect one.

Previously, initial smoothness of constructed pavements in Louisiana was evaluated by the straightedge test. Then, LA DOTD moved towards using California-Type Profilograph for quality control of pavement smoothness. LA DOTD also used the Mays Ride Meter but only for research purposes. Currently, LA DOTD is in the process of switching towards using the lightweight and full size inertial road profilers to evaluate/control pavement smoothness.

The use of IRI for pavement smoothness characterization is becoming increasingly popular among the state highway departments. Few state highway departments have developed new specifications for roadway smoothness based on IRI. As an example, Virginia Department of Transportation (V DOT) developed special provisions regarding the smoothness of asphalt pavement surfaces based on IRI. Their method is administered with a laser-equipped South Dakota-style inertial road profiler (McGhee, 2000). Many state highway departments are eager to adopt new IRI based specifications. However, there are difficulties associated with this move, such as the lack of rational methods to establish new specifications based of IRI or profile index with 0 mm blanking bandwidth (PI0).

Research studies have been initiated to help state highway departments establish new smoothness specifications. Most of the research was focused on establishing correlations between the old and new pavement smoothness indices. Models were developed to predict IRI using the profile index PI5,1 obtained from the measurements of roadway profiles using manual profilographs, computerized profilographs, lightweight inertial profilers, ultrasonic-type inertial profilers and laser-type inertial profilers. These models were developed by investigators such as Florida DOT (1997), Fernando (2000) and Hossain et al. (2000), based on data collected from specific climatic regions (e.g., Kansas, where conditions are wet with winter freeze), using specific equipment (e.g., lightweight inertial profiler) and specific pavement type (e.g., Portland Cement Concrete). Therefore, these models may or may not be valid for characterization of pavement smoothness in Louisiana where the climatic conditions are wet with no winter freeze.

RESEARCH METHODOLOGY

Twenty-three sections on asphalt concrete pavements were identified for this research. These sections are located on major highways in Louisiana and represent a wide range of pavement smoothness. The high-speed inertial profiler of Louisiana Transportation Research Center (LTRC) was used to collect field data on the pavement test sections. The profiler, shown in Figure 2, is the International Cybernetics Corporation (ICC) type with an infrared laser and precision accelerometer to obtain road profile measurement at speeds up to 105 kph (65 mph). Three laser height sensors are used to measure the distance between the road and a vehicle reference point while the vehicle is being driven over the road. The laser sensors mounted over the wheel paths produce longitudinal roadway profiles. The third laser sensor
mounted between the wheelpaths gives a reference elevation so that an average rut depth can be calculated for the wheelpaths. Accelerometers matched with the wheelpath laser sensors measure the vertical acceleration of the vehicle as it bounces in response to the road profile. Computer software called WINPRO (Windows Profiling Software) is used to analyze the data measured by the profiler. The software eliminates the vertical vehicle movement, leaving the true vertical profile of the road. Smoothness indices like International Roughness Index, Profile Index and Ride Number are then determined from the measured roadway profile.

Table (2): Statistical parameters for the smoothness indices used in this study.

<table>
<thead>
<tr>
<th>Smoothness Index</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Mean μ</th>
<th>Standard Deviation σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Roughness Index, IRI</td>
<td>472</td>
<td>6287</td>
<td>1192.4</td>
<td>829.6</td>
</tr>
<tr>
<td>Profile Index with 0 mm Blanking Bandwidth, PI_0</td>
<td>67</td>
<td>2396</td>
<td>399.5</td>
<td>328.5</td>
</tr>
<tr>
<td>Profile Index with 5.1 mm Blanking Bandwidth, $PI_{5.1}$</td>
<td>0</td>
<td>1793</td>
<td>129.4</td>
<td>197.9</td>
</tr>
<tr>
<td>Ride Number, RN</td>
<td>0.66</td>
<td>4.42</td>
<td>3.76</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Table (3): LA DOTD pay adjustment criteria based on $PI_{5.1}$ in mm/km (LA DOTD, 2000).

<table>
<thead>
<tr>
<th>Payment Adjustment (%)</th>
<th>Current Specifications Based on $PI_{5.1}$</th>
<th>100</th>
<th>95</th>
<th>80</th>
<th>50 or Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-lift new construction and overlays more than two lifts</td>
<td># 46</td>
<td>47 – 61</td>
<td>62 – 91</td>
<td>> 91</td>
<td></td>
</tr>
<tr>
<td>Single-lift construction over cold planed surfaces and two lift overlays</td>
<td># 76</td>
<td>77 – 91</td>
<td>92 – 152</td>
<td>> 152</td>
<td></td>
</tr>
<tr>
<td>Single-lift overlays over existing surfaces</td>
<td>#122</td>
<td>123 – 152</td>
<td>153 – 228</td>
<td>> 228</td>
<td></td>
</tr>
</tbody>
</table>

INITIAL DATA ANALYSIS

Longitudinal profiles (at wheel paths) were measured at twenty-three sections of asphalt concrete pavements with a total length of 98.7 km (61.3 miles). Data points were measured every 76.2 mm along each wheel path for each test section. Analysis was conducted on the measured profiles to determine the smoothness indices IRI, $PI_{5.1}$, PI_0 and RN. These indices are the average values for 80.47m intervals along each test section. A preliminary statistical analysis was conducted on these indices to evaluate the quality of the collected data.

Figure 3 depicts histograms of the distribution of the calculated pavement smoothness indices. The IRI data shown in Figure 3 cover a wide range of pavement smoothness that extends from 472 to 6287 mm/km. This is expected, since the pavement sections tested consist of new and old asphaltic concrete pavements. Statistical parameters such as the mean (μ), standard deviation (σ), minimum value and maximum value for the smoothness indices are calculated and are summarized in Table 2.

To achieve the objective of this research, correlations between the different smoothness indices need to be developed and validated. Figure 4 depicts the relationship between IRI and $PI_{5.1}$ determined from the longitudinal profiles of the pavement test sections. Examination of Figure 4 shows that there is high variability in the data. However, an attempt was made to obtain and evaluate the correlation between IRI and $PI_{5.1}$. Regression analysis was conducted to find the best relationship between IRI and $PI_{5.1}$ in which four different functions were used. The
following exponential, linear, polynomial and hyperbolic functions were obtained as a result of the regression
analysis:

\[
IRI = \begin{cases}
802.79e^{0.002PI_{5.1}}, \\
712.06 + 3.71PI_{5.1}, \\
681.97 + 4.15PI_{5.1} - 0.00047PI_{5.1}^2 \\
\frac{7.25PI_{5.1}}{1 + 0.000536PI_{5.1}}
\end{cases} \quad (1)
\]

where \(IRI\) is the International Roughness Index and \(PI_{5.1}\) is the Profile Index with 5.1 mm blanking
bandwidth. The linear function has a coefficient of
determination \(R^2 = 0.78\) and a standard error of estimation \(SEE = 385.2\). \(R^2\) values for the exponential, polynomial
and hyperbolic functions are 0.78, 0.79 and 0.70, respectively. The linear function appears to be the best
obtained correlation. However, it has a high value of
\(SEE\).

The models developed in Equation 1 were used to
backpredict the \(IRI\) values obtained from the profile
measurements. Comparisons of predicted and measured
\(IRI\) values are depicted in Figure 5. It is evident that these
models show large scatter of predicted versus measured
values of \(IRI\) and therefore might not be appropriate to set
up the threshold specification limit for pavement
smoothness control.

Based on this evaluation, the research team concluded
that even though the results of the initial regression
analysis showed that \(IRI\) could be estimated from \(PI_{5.1}\)
with an acceptable margin of uncertainty, it is not
appropriate to set up the criteria for \(IRI\) based smoothness
specifications.

STATISTICAL ANALYSIS

The results of the initial regression analysis on the
data did not yield acceptable correlations between \(IRI\) and
\(PI_{5.1}\). This is due to the high variability of the \(IRI\) and
\(PI_{5.1}\) data, especially at high \(PI_{5.1}\) values. The variability
of the data at high \(PI_{5.1}\) values is normal, since the
pavement test sections were comprised of old pavements
with rough surfaces. The outcome of the analysis in this
study will be used to set smoothness criteria for pavement
construction. The current LA DOTD specifications do not
allow the acceptance of any pavement constructed with
more than \(PI_{5.1} = 228\) mm/km. At this level of \(PI_{5.1}\), the
pavement surface is rough and might be neither safe nor
functional. Therefore, statistical analysis will be
conducted on the data with a range of acceptable
pavement smoothness.

Analysis of variance was conducted on the collected
data of the smoothness indices. The \(IRI\) values
corresponding to \(PI_{5.1}\) range from 0 to 7.6 mm/km were
grouped together in a group G1. Then, the number of data
points, mean, standard deviation and coefficient of
variation for \(IRI\) values were determined. Calculations
were also conducted for the next \(PI_{5.1}\) range from >7.6 to
15.2 mm/km, which is group G2. All data were grouped
using the 7.6 mm/km range up till the maximum value of
\(PI_{5.1}\) was reached. The mean \(IRI\) values for each group
are plotted against \(PI_{5.1}\) as shown in Figure 6.

Examination of Figure 6 indicates that there is a well-
defined relationship between \(IRI\) and \(PI_{5.1}\) up to
\(PI_{5.1} = 300\) mm/km. For \(PI_{5.1} > 300\), the data exhibit a high degree
of variability. Therefore, the analysis will consider only
the well-defined portion of the data with \(PI_{5.1} \leq 300\)
mm/km. This is acceptable, since the objective of the
research was to establish criteria of pavement smoothness
for acceptance and pay for pavement construction and
maintenance. Therefore, the analysis will focus on low
values of \(IRI\) and \(PI_{5.1}\), which indicate smooth pavements.

Figure 7a depicts the variation of mean \(IRI\) versus
\(PI_{5.1}\). The shaded area in Figure 7a denotes 95% confidence intervals. Different correlations were
attempted to develop correlations between \(IRI\) and \(PI_{5.1}\)
for the data presented in Figure 7b. The correlations
consist of linear, polynomial and exponential functions,
as shown in Figure 7b. The mathematical formulas for
these functions are:

\[
\begin{aligned}
IRI = \begin{cases}
705.2 + 3.43PI_{5.1} \\
766.1e^{0.0029PI_{5.1}} \\
783.1 + 1.67PI_{5.1}^2 + 0.006PI_{5.1}^2
\end{cases}
\end{aligned} \quad (2)
\]
Figure (4): IRI versus $PI_{5.1}$ for the pavement test sections.

Table (4): IRI values predicted using the models developed in this study.

<table>
<thead>
<tr>
<th>LA DOTD Specifications</th>
<th>RN Predicted from $PI_{5.1}$</th>
<th>Predicted IRI (mm/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PI_{0.2}$ (in/mi)</td>
<td>$PI_{5.1}$ (mm/km)</td>
<td>Linear model Eqn. 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>705</td>
</tr>
<tr>
<td>3</td>
<td>45.6708</td>
<td>862</td>
</tr>
<tr>
<td>4</td>
<td>60.8944</td>
<td>914</td>
</tr>
<tr>
<td>5</td>
<td>76.118</td>
<td>966</td>
</tr>
<tr>
<td>6</td>
<td>91.3415</td>
<td>1019</td>
</tr>
<tr>
<td>8</td>
<td>121.789</td>
<td>1123</td>
</tr>
<tr>
<td>10</td>
<td>152.236</td>
<td>1227</td>
</tr>
<tr>
<td>15</td>
<td>228.354</td>
<td>1488</td>
</tr>
</tbody>
</table>

These correlations have a high coefficient of determination, where $R^2=0.96$ for the linear function and $R^2=0.98$ for both the polynomial as well as the exponential function. The linear function is selected for the purpose of developing IRI based smoothness specifications for simplicity. The standard error of estimate for the linear functions $EES=27.6$ mm/km. Table 3 presents the current Louisiana smoothness...
specifications, which are based on $PI_{5.1}$. Also, these specifications are presented in Table 4 to verify the developed correlations. The IRI values were predicted using the linear function model in Equation 2 from the $PI_{5.1}$ values corresponding to LADOTD smoothness specification limits. These values are shown in Table 4, column 4.

![Graphs showing comparisons of predicted vs. measured IRI](image)

Figure (5): Comparison of IRI determined by the high-speed inertial profiler and that predicted by different models through correlations with $PI_{5.1}$.

Similar statistical analyses were also conducted to evaluate the relationships between IRI and RN and between $PI_{5.1}$ and RN. The correlations between these smoothness indices will help in developing the smoothness specifications based on multivariable data analysis. The relationship between $PI_{5.1}$ and RN is shown in Figure 8. The data quality is good to warrant the development of an accurate predictive model. Regression analysis was conducted to find the best model among linear, polynomial and exponential functions. The results
are given in the following equation:

$$ RN = \begin{cases}
4.31 - 0.0041PI_{5.1} \\
4.33e^{-0.0011PI_{5.1}} \\
4.4 - 0.0064PI_{5.1}^2 + 7.95PI_{5.1}^2
\end{cases} \quad (3) $$

The coefficient of determination for the linear, polynomial and exponential function are 0.97, 0.98 and 0.99, respectively. All these models are considered good based on the smoothness range used in the analysis. The linear function is selected to represent the relationship between RN and $PI_{5.1}$. The linear function was used to predict the ride number corresponding to the $PI_{5.1}$ values specified by LA DOTD specifications. The results are presented in Table 4, column 3. The values of IRI and RN obtained from the models developed using the field data will form the base for the development of new IRI and RN based smoothness specifications for asphalt concrete pavement in Louisiana.

Table (5): The new IRI based smoothness specifications currently under review for implementation for construction control of asphalt concrete pavements.

<table>
<thead>
<tr>
<th>Percent of Contract Unit Price/Lot*</th>
<th>Units</th>
<th>100%</th>
<th>90%</th>
<th>80%</th>
<th>50%** or remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-lift new construction and overlays of more than two lifts</td>
<td>mm/km</td>
<td>< 990</td>
<td>990 - 1142</td>
<td>NA</td>
<td>> 1142</td>
</tr>
<tr>
<td></td>
<td>in/mi</td>
<td>< 65</td>
<td>65 - 75</td>
<td>NA</td>
<td>> 75</td>
</tr>
<tr>
<td>Category B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One or two lift overlay construction over cold planed surfaces and two-lift overlays</td>
<td>mm/km</td>
<td>< 1142</td>
<td>1142 - 1355</td>
<td>NA</td>
<td>> 1355</td>
</tr>
<tr>
<td></td>
<td>in/mi</td>
<td>< 75</td>
<td>75 - 89</td>
<td>NA</td>
<td>> 89</td>
</tr>
<tr>
<td>Category C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-lift overlays over existing surfaces</td>
<td>mm/km</td>
<td>< 1294</td>
<td>1294 - 1446</td>
<td>1446- 1674</td>
<td>> 1674</td>
</tr>
<tr>
<td></td>
<td>in/mi</td>
<td>< 85</td>
<td>85 - 95</td>
<td>95 - 110</td>
<td>> 110</td>
</tr>
<tr>
<td>Shoulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm/km</td>
<td>< 1675</td>
<td>NA</td>
<td>NA</td>
<td>> 1675</td>
<td>Pay 70% or remove</td>
</tr>
<tr>
<td>in/mi</td>
<td>< 110</td>
<td>NA</td>
<td>NA</td>
<td>> 110</td>
<td>Pay 70% or remove</td>
</tr>
<tr>
<td>Incentive pay, final completion, average of all travel lanes (with no lot less than 100% pay)</td>
<td>mm/km</td>
<td>+10% of the value of the wearing course (plan quantities)</td>
<td>≤ 685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in/mi</td>
<td>+10% of the value of the wearing course (plan quantities)</td>
<td>≤ 45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* or Portion of lot placed on the Project.
** At the option of the engineer.
Figure (6): Relationship between mean IRI and $PI_{5.1}$ obtained via analysis of variance.

(a) Mean IRI versus $PI_{5.1}$ with the 95% confidence interval

(b) Mean IRI versus $PI_{5.1}$ with the different regression functions.

Figure (7): Analysis of variance of the smoothness indices of the collected data.
Figure (8): Ride number versus the profile index with 5.1 mm blanking bandwidth.

Figure (9): Relationship between IRI and RN for the pavement test sections.

Statistical analysis was also conducted to evaluate the relationship between IRI and RN. The results are depicted in Figure 9. The best function that correlates IRI to RN is a linear function with $R^2=0.98$, as shown in Figure 9. The linear model was used to predict the IRI limits corresponding to the specifications limits of LA DOT, as presented in Table 4, column 5. The linear models used to predict IRI from $PI_{5.1}$ and RN produced reasonable values that can be used to guide a selection of new IRI based smoothness specifications.

Based on this analysis, IRI based smoothness specifications were developed for asphalt concrete pavement in Louisiana and are summarized in Table 5. These specifications are currently under processing for approval by LA DOTD.
CONCLUSIONS

Statistical analyses were conducted to establish mathematical relationships between IRI, PI5.1, and RN. The data used in the analyses were collected from measurement of longitudinal profiles along 98.7 km of asphalt concrete pavements in Louisiana. Relationships between the different indices were evaluated. The linear models that relate IRI to PI5.1 and IRI to RN were selected. These models were used to develop smoothness criteria based on IRI for asphalt pavements in Louisiana.

ACKNOWLEDGEMENT: This research was financially supported by Louisiana Transportation Research Center and Louisiana Department of Transportation and Development. The authors would like to acknowledge Gary Keel of LTRC for his significant help in collecting field data. The authors also would like to thank Mohammad Elias, University of Wisconsin-Milwaukee, for his help in preparing the manuscript.

DISCLAIMER: The contents of this paper reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development, the Federal Highway Administration or the Louisiana Transportation Research Center. This paper does not constitute a standard, specification or regulation.

REFERENCES

